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ABSTRACT

A nonequilibrium molecular dynamics study of self diffusion in a Lennard-Jones-like
fluid shows that the high mass-flux stages of mixing are described well by generalized
hydrodynamics.  There is no indication of the damped-wave propagation implied by the
Telegrapher’s equation, and the mass flux is less than that predicted by the diffusion
equation.



INTRODUCTION

In this paper we examine, using the method of molecular dynamics, a simple fluid

system that is, in a hydrodynamic sense, far from equilibrium, in particular a diffusive system

in which the mass flux is so large that the diffusion equation (and Fick’s Law) is not

expected to provide an accurate description.  Interest in ‘correcting’ the diffusion equation

extends as far back as 1867 to Maxwell (who suggested that a damped wave equation

should replace the diffusion equation) [1] and continues to recent work in the areas of

generalized hydrodynamics [2,3], and extended irreversible thermodynamics [4]. The results

of the nonequilibrium molecular dynamics simulations presented here provide some measure

of clarification pertaining to the very earliest stages of the mixing process, and tend to

support our earlier conclusion [3] that generalized hydrodynamics is the preferred

description.

We begin by describing how a ‘rectangular pulse’ decays by self-diffusion in a

moderately dense, Lennard-Jones-like, fluid at a moderate temperature, in d=2 and d=3

dimensions using the method of nonequilibrium molecular dynamics.  We then briefly

review several of the theories mentioned above and discuss the extent to which they

describe the simulation results.  We find that :  (1) the simulated system behaves

qualitatively, in many respects, like a system described by the classical diffusion equation;

(2) there is no indication that the initial ‘rectangular pulse’ propagates as a wave (damped

or undamped);  and (3) that a simple modification of the usual generalized hydrodynamic

approach provides a very accurate description of the simulation.



NONEQUILIBRIUM MOLECULAR DYNAMICS OF SELF DIFFUSION

The nonequilibrium molecular dynamics calculations were made for systems of

particles that interact through the Lennard-Jones-spline potential [5].  This potential is a

finite-ranged modification of the 12-6 Lennard-Jones potential.  N particles were placed in a

volume V = LxLp
d-1 .  Three such systems were examined:  (1) d=3, nσ3 = 0.5, Lp/Lx = 6; (2)

d=3, nσ3 = 0.2, Lp/Lx = 6; and (3) d=2, nσ2 = 0.5, Lp/Lx = 100. In all cases initial states were

selected from an ensemble of constant-energy, zero-momentum, molecular dynamics

trajectories.  The total energy was set so that <kBT/ε>MD = 2 and periodic boundary

conditions were used..  At time t = 0 all particles in a slab, perpendicular to the x axis and

centered about x=0, were assigned a species label 1; the particles outside this slab were

assigned species label 2; the slab width was Lx/10.  The trajectory of the system was

advanced using the Verlet algorithm; the integration time step was 0.003 σ(m/ε)1/2 for d=3

calculations and 0.0025 σ(m/ε)1/2 for the d=2 calculations.  Every 30 time steps the number

of species 1 and 2 particles in layers perpendicular to the x-axis were calculated (100 and

200 layers were used for d=3 and d=2 systems, respectively).  The average 2nd, 4th, 6th,

8th, and 10th moments of the single-particle displacement, d(t), were also calculated.

To characterize the early stages of diffusion the d=3 trajectories were advanced 900

time steps and d=2 trajectories for 1200 time steps.  The mole-fraction of species 1, c(x,t),

was obtained by taking averages over an ensemble of NI initial states. For the case d=3,

nσ3=0.5, NI = 92; for d=3, nσ3=0.2, NI = 100; and for d=2, nσ2=0.5, NI = 104.

In Fig. 1 we plot c(x,t) as a function of x for several values of t for the case d=3,

nσ3=0.5; the c(x,t) for the other two cases are quite similar in form.  c(x,t) has been



calculated for a discrete set of x-values corresponding to the x-coordinate of the center of a

layer; we have displayed the piecewise continuous curve obtained by drawing a straight line

between adjacent points.  (A statistical analysis of all quantities given in this paper was

performed using the methods described in Ref [6].)  A few error bars having a total length

of two standard deviations of the mean are placed on the curves to give a general

impression of the statistical certainty of the results. In a qualitative sense c(x,t) looks

remarkably ‘diffusive’ in character. However, we will see below that the c(x,t) are not the

solutions of the diffusion equation.

The cumulants of the single-particle displacement, ρi (i=1,...5) were calculated from

the moments of d(t).  ρ1(t) = <d(t)2>/2!, ρ2(t) = [<d(t)4> - 3<d(t)2>2]/4!, etc...., where the

average is over the ensemble of trajectories. The ratios ρi(t)/ρ1(t)
i  are zero at t = 0, reach a

maximum and then decay to zero as t → ∞ [7].  For i = 2 the ratio never exceeds 0.05, and

for i ≥ 3 the ratios are always less than 0.005.

THEORETICAL MODELS

In this section we compare the solutions of the diffusion equation, a damped wave

equation, and a form of generalized hydrodynamics to the simulation results.  Only the latter

theory gives an adequate description.

The diffusion equation.

The classical diffuison equation of hydrodynamics is obtained by combining Fick’s

Law, j1(x,t) = - D∂c(x,t)/ ∂x, with the continuity equation, ∂c(x,t)/ ∂t = - ∂j1(x,t)/ ∂x:
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Here j1 is the number flux of species 1 and D is the self-diffusion coefficient.  D depends on

T and n but is independent of cDE(x,t) [2].  D has been calculated by Kincaid et al.[6] for the

three-dimensional states considered here.  [D = 0.412 σ(ε/m)1/2 , nσ3 = 0.5; D = 1.30

σ(ε/m)1/2, nσ3 = 0.2.]  Given the rectangular pulse initial condition, c(x,0), it is

straightforward to calculate cDE(x,t).  In Fig. 2 we show cDE(x,t) as a function of x for the

same times t used in Fig. 1 (nσ3 = 0.5).  Although cDE(x,t) has all the same qualitative

features of the simulation results shown in Fig. 1, the diffusion equation solution spreads

too rapidly.  That is, at very short times the mass flux is too large.  The explicit solution for

j1DE(x,t) shows that j1DE ∝ t-1/2 (as t → 0) at the edge of the initial rectangular pulse, a well-

known but often ignored problem.

The damped wave equation

In the initial (very short time) stage the mixing of species 1 and 2 is caused by the

free streaming of all particles.  In this limit j1 ∝ (kBT/m)1/2 at the edge of the initial pulse --

i.e. j1 is a finite constant as t → 0.  A damped wave equation in which the propagation

speed is the thermal velocity will correctly describe this earliest phase of the mixing.  By

making the damping constant proportional to D, such an equation will approach the

diffusion equation as t → ∞.  Maxwell [1], and subsequently many others [4], have argued

that this type of equation, which also has the feature that the initial condition cannot

propagate faster than the wave speed, should replace the parabolic hydrodynamic equations

(the diffusion and heat equations). The Telegrapher’s equation



1 1
2

2

2

2

2u

c

t D

c

t

c

x
TE TE TE∂

∂
∂
∂

∂
∂

+ =    , (2)

where u is the wave speed, is the most frequently studied equation of this type.  With u =

(kBT/m)1/2 the solutions of Eq. (2) have some features of the correct behavior in the t → 0

and t → ∞ limits.  However, as can be seen in Fig. 3, the solution cTE(x,t) does not bear

much qualitative resemblance to the simulation results.  In particular cTE(x,t) shows distinct

wave fronts and a wake that do not appear in the simulation results.

Generalized hydrodynamics

By making a small change in the form of the expansion method used in generalized

hydrodynamics we showed in Ref. [3] that it was possible to avoid the use of partial

differential equations to describe self-diffusion:
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Here w x x t= − ′( ) / ( )4 1ρ  and [ ]G x x w tK ( ) exp / ( )− ′ = − 2
14πρ .

The first term on the right hand side of Eq. (3), c(1)(x,t), is a solution of the diffusion

equation with a time dependent diffusion coefficient D(t) = ∂ρ1/∂t.  In the limit t → 0



cGH(x,t) reduces to the correct free streaming result, and as t → ∞, cGH → cDE for d > 2.

(Recall that for d=2 the diffusion coefficient does not exist.)  Since the ratios ρi/ρ1
i appear

to be quite small for all times, Eq. (3) seems ideally suited to describe all stages of self

diffusion for any dimensionality d [3].

In Figs. 4-6 we compare cMD to cDE , c(1), and the third approximation to cGH, cGH
(3) =

c(1) + c(2) + c(3). [For d=2, nσ3=0.5 we chose D=0.475 σ(ε/m)1/2 .]  Let ∆ = cGH
(3) - z(x,t),

where z(x,t) is cMD (the crosses) or cDE (curve a) or c(1) (curve b). cGH
(3) - cMD does not differ

significantly from zero over the entire range of x and t considered in this study and c(1)(x,t)

is found to be an excellent approximation over this range.

SYMBOLS

d system dimensionality

ε Lennard-Jones energy parameter

σ Lennard-Jones distance parameter

N number of particles

V system volume

Lx system length in x-direction

Lp system length normal to the x-direction

kB Boltzmann’s constant

T temperature

<...>MDaverage over a trajectory



t time

x x-coordinate

m particle mass

d(t) single-particle displacement

c(x,t) mole fraction of species 1

NI number of initial states

n N/V

ρi(t) i-th cumulant of d(t)

j1 number flux of species 1

D self-diffusion constant

u wave speed

∆ mole-fraction difference
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FIGURE CAPTIONS

Fig. 1 Molecular dynamics calculations of cMD(x,t) as a function of x for times t* = 0, 

0.54,1.08,1.62, 2.16, and 2.70.  (t = t*σ(m/ε)1/2 , d=3, nσ3 = 0.5)

Fig. 2 Solution of the diffusion equation, cDE(x,t), as a function of x for times t* = 0, 

0.54,1.08,1.62, 2.16, and 2.70.  (t = t*σ(m/ε)1/2 , d=3, nσ3 = 0.5)

Fig. 3 Solution of the Telegrapher’s equation, cTE(x,t), as a function of x for times t* = 0,

0.54,1.08,1.62, 2.16, and 2.70.  (t = t*σ(m/ε)1/2 , d=3, nσ3 = 0.5)

Fig. 4 Comparison of cMD (crosses), cDE (a), and c(1)  (b) to cGH
(3) . (t = 1.08 σ(m/ε)1/2 , 

d=3, nσ3 = 0.5)

Fig. 5 Comparison of cMD (crosses), cDE (a), and c(1)  (b) to cGH
(3) . (t = 0.54 σ(m/ε)1/2 , 

d=3, nσ3 = 0.2)

Fig. 6 Comparison of cMD (crosses), cDE (a), and c(1)  (b) to cGH
(3) . (t = 1.2 σ(m/ε)1/2 , d=2, 

nσ2 = 0.5)














